Math 103 Day 16: Optimization

Ryan Blair

University of Pennsylvania
Thursday November 4, 2010

Outline

Steps to Solving Optimization Problems

(1) Draw a picture representing the problem.
(2) Find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(9) Use the first derivative test to find the local minima and maxima.
(5) Finish solving the problem.

Example

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that boarders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
(1) Draw a picture representing the problem.
(2) Find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(3) Use the first derivative test to find the local minima and maxima.
(5) Finish solving the problem.

Example

A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.
(1) Draw a picture representing the problem.
(2) Find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(9) Use the first derivative test to find the local minima and maxima.
(3) Finish solving the problem.

Example

Find the point on the parabola $y^{2}=2 x$ that is closest to the point $(1,4)$.
(1) Draw a picture representing the problem.
(2) Find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(9) Use the first derivative test to find the local minima and maxima.
(6) Finish solving the problem.

Example

Find the dimensions of a rectangle of largest area that can be inscribed in an equilateral triangle of side length L if one side of the rectangle lies on the base of the triangle.
(1) Draw a picture representing the problem.
(2) Find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(3) Use the first derivative test to find the local minima and maxima.
(5) Finish solving the problem.

